
1 

American Institute of Aeronautics and Astronautics 
 

 

Linear Covariance Analysis for a Lunar Lander 

Jiann-Woei Jang1, Sagar Bhatt2, Matthew Fritz3 and David Woffinden4 

The Charles Stark Draper Laboratory, Inc., Houston, TX, 77058 

Darryl May5, Ellen Braden6 

NASA Johnson Space Center, Houston, TX 77058 

Michael Hannan7 

NASA Marshall Space Flight Center, Huntsville, AL 35812 

A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which 

includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The 

design goal is to allow the lander to softly land within the prescribed landing precision. The 

achievement of this precision landing requirement depends on proper selection of the sensor 

suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear 

Covariance (LinCov) analysis tool developed by Draper.  

I. Introduction 

Since the Lunar Reconnaissance Orbiter found evidence of water on the Moon’s surface in 2009, the 

excitement over the implications of water on the Moon for future human missions has triggered multiple moon 

exploration proposals. For example, the Resource Prospector (RP) mission is an in-situ resource utilization (ISRU) 

technology demonstration mission under study by NASA1.  Future moon missions like RP will conduct activities to 

characterize the conditions of representative exploration environments, identify hazards, and assess resources to 

enable future human exploration1.  

 

Some near-term lunar exploration mission proposals have one common goal, which is to verify the existence of 

hydrogen. To maximize the probability of mission success, precision lunar landing is the ultimate mission 

requirement. The entire lunar mission can be broken into the following sub-phases of flight: Earth ascent, Low Earth 

Orbit circularization, translunar insertion, translunar cruise, lunar orbit insertion, lunar orbit circularization, lunar 

descent insertion, braking, coasting, and final descent and landing. Each segment between those waypoints requires 

precision flight control to ensure states at the end of each segment are achievable. Control precision is dependent on 

prudent sensor suite design. Linear Covariance (LinCov) analysis2, using a statistical approach to “envelope” the 

Monte-Carlo results in a fraction of the time, has been used to design sensor suite for powered lunar descent and 

landing3.  LinCov analysis enables a program to trade many combinations of sensors early in the design phase and 

search for sensor combinations that reduce cost while meeting requirements. 

 

This paper studies the final lunar descent phases of the lunar exploration mission, starting from the braking 

phase through the terminal descent phase and ending with landing on the surface of the moon. A conceptual GNC 

design is used to illustrate a candidate final lunar descent profile. The conceptual GNC scheme will be briefly 

introduced. Then an overview of the candidate sensor models will be presented. A brief overview of linear 

covariance theory and LinCov analysis tool utilized in this research will be provided. A linear covariance analysis 

will then be performed for the final descent phase. Finally, a robust sensor selection procedure is discussed. 
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II. Lunar Descent GNC  

In this section, the lunar descent GNC architecture is briefly outlined. The conceptual GNC mission assumes that 

the lunar descent GNC mission consists of three segments: braking, coast, and terminal descent and landing. The 

braking phase of flight starts from the initial descent altitude and velocity and uses a solid booster to significantly 

reduce the lander speed before the lander transitions into the coast phase. GNC consists of navigation, guidance, and 

control subsystems. The navigation module processes sensed data from various sensors and outputs estimated 

translational and rotational states for guidance and control to use. An example sensor suite is detailed in the next 

section. The guidance module uses the translational states from the navigation module along with the target landing 

site state to calculate the desired translational acceleration. In this work, the lunar powered descent guidance is 

divided into three segments: (1) Braking Phase, (2) Coast Phase, and (3) Approach and Landing Phase. An Apollo 

explicit guidance law is used as the descent guidance logic4 as an example. The commanded acceleration 
ca is 

defined as in Eq. (1) 
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where T is the guidance time, vr  and  are the current position and velocity states, and 
ttt avr  and,,  are the 

targeted position, velocity and acceleration, respectively. The steering algorithm in the guidance module calculates 

the desired attitude states for control. In the control module, attitude and rate errors are calculated by subtracting the 

navigation-estimated attitude/rate from the commanded attitude/rate. The resulting rotational states then are filtered 

by flex filters before they are sent to attitude control subsystem. During the braking phase, the example lander uses a 

Thrust Vector Control (TVC) system for pitch and yaw control and Reaction Control System (RCS) for roll control. 

The TVC controller consists of both Proportional–Integral–Derivative (PID) control and load relief control. The PID 

controller is designed using gain scheduling, a process that involves optimizing a controller for specific design 

points throughout the time of flight and linearly interpolating between these points to obtain gain values for any 

flight time5. The load relief controller for a lander vehicle can be used to balance disturbances due to hardware 

imperfections or build tolerances resulting from biased thrust vectors, thrust vector uncertainty, and misaligned 

sensors. During the coast phase of flight, no thrust activity will be scheduled. Following the coast phase, the 

terminal descent phase will use throttleable liquid thrusters for the precision descent and landing; the pitch and yaw 

attitude errors are controlled by differentially firing opposing thrusters while roll attitude error is mitigated by RCS 

thrusters commanded via phase plane logic. The phase plane controller is an inherently nonlinear system which 

necessitates the use of nonlinear techniques in order to predict the system’s behavior.  The detailed design and 

analysis of the fixed-jets roll control system can be found in References 6 to 9. 

 

III. Candidate Sensor Suites and Baseline Sensor Specifications 

The candidate sensor suite for the conceptual lunar mission is first baselined. The initial error assumptions for 

each sensor are specified first. The success of a precision landing will be reliant on the proper sensor selection which 

includes identifying the performance of the sensor suite as an integrated system. Throughout the final descent flight 

phase, an inertial measurement unit (IMU), consisting of both a rate gyro and an accelerometer, will be sampled at a 

high rate to provide both rotational and translation state estimation. During the coast phase of flight, a star tracker 

will be used for rotational state estimation. Two separate sensors will be activated based on a minimum altitude 

threshold, a Terrain Relative Navigation (TRN) sensor10,11 and a radar altimeter. The TRN sensor will be activated 

near the end of the coast phase whereas the radar altimeter will be activated during the terminal descent phase. The 

TRN sensor will be used to provide position state measurements whereas the radar altimeter will provide attitude 

state updates.  The TRN sensor will be shut down at an altitude where the stored imagery resolution is no longer 

adequate. The altimeter will be shut down when thruster plume from the lunar lander kicks up substantial lunar 

regolith 20 to 30 meters above the surface. Dead reckoning using IMU only will be used during the last portion of 

the descent once the other sensors have been deactivated. A detailed explanation of each sensor as modeled and used 

for the LinCov analysis is discussed below.   
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IMU Sensor Model 

 

 As previously mentioned, the IMU12 consists of a translational measurement device (accelerometer) and a 

rotational measurement device (gyro). The IMU model perturbs the true translational acceleration and rotational rate 

by a combination of noise components to produce the sensor measurement. The accelerometer model is shown in 

Eq. (2) and the gyro model is shown in Eq. (3) 
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where I represents a 3x3 identity matrix, SFx represents a scale factor matrix, Ea represents the non-orthogonality 

component, x represents the internal misalignments, case

iT  represents the direction cosine matrix (DCM) from an 

inertial fixed frame to the IMU case frame, bx represents the accelerometer/gyro bias and x represents the noise 

present on the measurement. 

 

Star Tracker Sensor Model 

 

 The star tracker model13 perturbs the true attitude of the lander through a combination of alignment error and 

measurement noise. The star tracker produces a measurement of the lander attitude relative to the inertial reference 

frame as seen from the star tracker case frame. Since a star tracker is an image sensor which processes a star capture 

into an attitude estimate by comparing the image to an onboard star catalog, error from this internal estimation 

process will be present in the measurement. It is assumed this error is modeled via the measurement noise in the 

following model provided by Eq. (4) 

 
b
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where st

iq~  represents the inertial to star tracker case attitude, st
q b

 represents the body to star tracker case attitude 

(which is a known quantity based on sensor mounting on the vehicle), b

iq  represents the inertial to body attitude, 

eq represents the misalignment error and 
ηq  represents the error due to the measurement noise.  

 

Radar Altimeter Sensor Model 

 

 The radar altimeter model11 corrupts the true altitude by measurement noise and an altimeter bias. While radar 

altimeters convert frequency shifts in radar signals into range estimates, the altimeter model implemented computes 

the altitude based on the position of the lander, which provides effectively the same information while simplifying 

the calculation. The altimeter model used during the LinCov analysis is shown in Eq. (5) 

 

hhbhh 
~

 (5) 

 

where h  represents the true altitude of the lander, 
hb  represents the measurement bias and 

h  represents the noise 

present on the measurement.  

  

TRN Sensor Model 

 

 The TRN sensor10,11 is an image processing sensor that utilizes an onboard map of the landing site and overlays 

images captured during descent to determine the position of the lander relative to the surface. The actual 

implementation of an actual TRN sensor differs from the model implemented during the LinCov analysis. The TRN 
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model implemented does not directly process imagery data into a position estimate since this is typically handled by 

a separate onboard algorithm. Instead, it is assumed that the measurement from the TRN sensor is the position 

estimated from this separate onboard algorithm. As a result of this assumption made to simplify the modeling of the 

TRN sensor, additional errors that are frequently captured by separate individual components within the TRN 

onboard position estimate algorithm are instead captured through an increase in the measurement noise which is 

typically provided by this separate algorithm. The TRN model used during the LinCov analysis is shown in Eq. (6) 
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where f

trn/refr~  represents the position of the TRN sensor relative the reference position in the planet surface fixed 

frame,  i

trnr  represents the position of the TRN sensor in the inertial frame, case

refr represents the reference position in 

the TRN sensor case frame, f

iT  represents the DCM from inertial frame to planet surface fixed frame, 

f

caseT represents the DCM from TRN sensor case frame to planet surface fixed frame, btrn represents the 

measurement bias and trn represents the noise present on the measurement.  

 

Table 1 provides examples of candidate sensor suites for the conceptual lunar lander. As shown in Figure 1a, 

with radar altimeter measurements only, the navigation algorithm is able to estimate the vehicle’s altitude state but 

not the downrange/cross-track states. In Figure 1b, with the TRN sensor included, the navigation algorithm can 

estimate all three directions, resulting in a drastic improvement in the overall RSS position error. The validity of this 

sensor suite will be verified via LinCov analysis and the corresponding results will be summarized in Section V. 

 

 
 

Table 1. Example of Sensor Specification for the Conceptual Lander 
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(a)                                                                             (b)  

Figure 1. IMU, Star Tracker, Radar Altimeter, and TRN Sensors for a Conceptual Lander 

IV. Linear Covariance Analysis Overview 

In general, to perform the necessary analysis and evaluation of a GNC system, there are several key variables of 

interest, including environment dispersions, navigation dispersions, actual navigation error, and onboard navigation 

error14. These variables characterize the performance of the system and are used to develop and validate mission 

objectives and requirements. Extensive effort and resources are often allocated for the very purpose of producing 

and analyzing the quantities of these system parameters. For this paper, they are instrumental in characterizing the 

overall system and navigation performance for descending to the surface of the moon. This section is dedicated to 

formally defining these metrics and summarizing the analysis techniques. 

 

Performance Metrics 

 

The environment dispersions x  are defined as the difference between the environment state x  and the nominal 

state x .  The environment state is an )1( n  vector that represents the true or actual state.  The nominal state is also 

an )1( n  vector that represents the desired or reference state.  The covariance of the environment dispersions, D , 

indicates how precisely the system can follow a desired trajectory, as shown in Eq. (7) 

 

 TE xxDxxx                                        ,  (7) 

 

The environment (or true) dispersions are often referred to as simply dispersions (e.g., trajectory dispersions, 

position dispersions, relative dispersions). 

 

The navigation dispersions are defined as the difference between the navigation state x̂  and the nominal state, as 

shown in Eq. (8).  The navigation state is an )1ˆ( n  vector that represents the estimated state. 

 

 TE xxDxNxx ˆˆˆ                                  ,ˆˆ    (8) 

 

The matrix N  is an )ˆ( nn  mapping matrix that defines the estimated state in terms of the true and nominal state.  

It typically cancels the attitude rate state when gyro measurements are incorporated in lieu of an angular rate 

estimate. An inverse mapping takes the estimated state to the true state, represented with an )ˆ( nn  matrix 
T

N . The 
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covariance of the navigation dispersions, D̂ , reflects how precisely the onboard system thinks it can follow a 

prescribed reference trajectory. 

 

The true navigation error is the difference between the environment and navigation states.  It is also the 

difference between the environment and the navigation dispersions. The covariance of the true navigation error, P , 

shown in in Eq. (9), characterizes how precisely the onboard navigation system can determine the actual state. 

 

 TE eePxxNxNxe                    ,ˆˆ  (9) 

 

The onboard navigation error is never computed but is used to develop the onboard navigation filter equations. It 

is defined as the difference between the design state, x , and the navigation state, as shown in Eq. (10) 

 

 TE eePxxe ˆˆˆ                                      ,ˆˆ    (10) 

 

The covariance of the onboard navigation error, P̂ , shows how precisely the onboard navigation system thinks it 

can determine the actual state. The performance of the onboard navigation system is determined by comparing P̂  to 

the actual navigation performance P . It is the covariance of the true dispersions, navigation dispersions, true 

navigation error, and the onboard navigation error that are ultimately used to analyze and assess the performance of 

a proposed GNC system. 

 

Obtaining the Performance Metrics 

 

A common approach to obtain these performance metrics is to use a Monte Carlo simulation as shown in Figure 

2, where the sample statistics of hundreds or thousands of runs are used to numerically compute the desired 

covariance matrices, as shown in Eq. (11) 
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This consistent statistical information can be obtained using linear covariance analysis techniques15,16,17,18 by 

directly propagating, updating, and correcting an augmented state covariance matrix C , 

 

 TE XXC   (12) 

 

where the augmented state  TTT
xxX ˆ   consists of the true dispersions and the navigation dispersions.  

Notice that by simply pre- and post-multiplying the augmented state covariance matrix by the following matrices, 

the covariance matrices for the trajectory dispersions, navigation dispersions, and the navigation error can be 

obtained, as shown in Eq. (13) 
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Consequently, Monte Carlo and linear covariance analysis techniques provide a complimentary analysis package 

since they each generate the consistent statistical information using different approaches.  The strengths and 

weaknesses of one technique often offset the other.  Such is the case when developing and analyzing the preliminary 

trajectory design and concept of operations for close-proximity asteroid operations. 
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Figure 2. GN&C Performance Metrics in a General Monte Carlo Simulation 

V. Linear Covariance Analysis for Lunar Lander 

LinCov is designed to estimate navigation errors and trajectory dispersions of a vehicle GNC system for space 

missions. Based on linear covariance theory, a single LinCov run can give a similar estimation of trajectory and 

navigation performance as that of thousands of Monte Carlo simulations. In this paper, a LinCov analysis will be 

used to identify candidate sensor suites as well as initial relative state dispersion requirements necessary for 

satisfying precision landing requirements.  Typical precision landing requirements consist a landing site footprint, 

vertical and horizontal landing velocities, as well as the attitude and rate. 

 

The Draper LinCov tool provides the following analysis capabilities: (1) Nominal analysis, which predicts the 

nominal trajectory performance, (2) Dispersion analysis, which predicts the Trajectory and Navigation dispersed 

performance for the pre-selected sensor suites on the lunar lander, (3) Sensitivity analysis, which estimates the 

sensitivity of the overall Trajectory and Navigation dispersion performance to different components (sensors, 

environments, and initial conditions) and their corresponding parameters, and (4) Requirement analysis, which will 

help GNC and systems engineers to finalize the sensor selection and determine the corresponding sensor 

specifications to meet the landing and budget requirements. In this section, Nominal, Dispersion, and Sensitivity 

analysis will be performed for the conceptual lunar lander GNC design. 

 

In the nominal analysis, a nominal trajectory and GNC are installed in the LinCov tool. The implementation is 

verified by comparing the LinCov nominal response to a 6DOF nonlinear simulation. Both translational and 

rotational states will be verified. Figure 3 shows the time history data of an example lunar mission which consists of 

three flight phases: (1) brake burn phase from 0 sec to ~81 sec, (2) coast phase from ~81 sec to ~160 sec and (3) 

approach and landing phase from ~160 sec to ~296 sec.  In this example, the IMU is active during all three flight 

phases.  Figure 4  demonstrates the sensor activation timeline. In this example, star tracker is used only during coast 

phase. The TRN sensor is activated when altitude is below 10 km and altimeter is turned on when altitude is less 

than 2.4 km. 
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Figure 3. An Example 6-DOF Nominal Response 

 

 
Figure 4. An Example of Sensor Activation Time Line 

 

 Based on the linear covariance theory introduced in the previous section, sensor error specs, and initial 

navigation errors and trajectory dispersions for this lunar mission example, the navigation error and trajectory 

dispersions can be estimated using LinCov.  The translational state dispersion analysis for this example are 

demonstrated in Figure 5. The green line in Figure 5 is the prediction of the time history of the onboard navigation 

translational state error. In this example, the position navigation error is dramatically reduced with the first TRN 
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estimate and altitude navigation estimation is improved when the altimeter sensor turns on. The position and 

velocity error dispersion results shown in Figure 5 indicate that the translational states are controlled via an open-

loop guidance during the braking phase. The corresponding state errors are corrected via a closed-loop guidance 

during the Approach and Landing phase. The rotational states dispersion analysis for this example are demonstrated 

in Figure 6. The rate error is always zero since the model replacement method is assumed. The attitude error is 

significantly reduced when the star tracker sensor is activated. 

 

 
Figure 5. An Example of Navigation Error and Trajectory Dispersion Estimation for Translational States 

 

 
Figure 6. An Example of Navigation Error and Trajectory Dispersion Estimation for Rotational States 
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 The dispersed propellant and Delta-V usage are obtained as follows. The expelled propellant mass, 
expelledm ,  is 

included as a state using the equation of motion shown in Eq. (14) 

 

a
0gI

mm
m

sp

expelledinit

expelled


  (14) 

 

where 
expelledm  is zero at time zero, 

initm  is the total initial vehicle mass (including propellant), 
spI  is the thruster 

specific impulse, 
0g  is the Earth gravitational constant, and a  is the control acceleration. Therefore, the Delta-V 

usage can be calculated by Eq. (15) 
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  (15) 

 

Recalling Eq. (7), let the expelled mass environment dispersion element of the covariance be given by Eq. (16) 

 

 T

expelledexpelledm mmE D  (16) 

 

Then the Delta-V dispersion covariance is given by Eq. (17) 

 

  T

m

T

v vvE HHDD    (17) 

 

The consumed propellant and Delta-V are shown in Figure 7. The right-hand side plots in Figure 7 illustrate the 

nominal propellant consumption and Delta-V costs.  The error budgets as a function of time for both propellant and 

Delta-V are shown on the left-hand side of Figure 7. 

 

 
Figure 7. An Example of Expelled Mass Errors and Delta-V Estimation 

The dispersion analysis shown in Figure 5 to Figure 7 estimates the navigation error and trajectory dispersion for 

the entire mission. From these plots, users can predict worst-case navigation performance and trajectory deviation at 

any flight time. GNC engineers can use this data to predict the flight performance against requirements.  In this 
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lander design example, the conceptual mission requires that GNC shall place the lander within 100m circular 

landing foot print of the prelaunch selected landing site, maintain a horizontal and horizontal velocity of less than 2 

m/s at touchdown, and control the spacecraft angle rate to less than 2 deg/sec in all three axes at touchdown. If the 

dispersion analysis indicates that any mission landing site requirement is not satisfied, further analysis can be 

performed with LinCov to obtain more information. In this example, the baseline sensors and initial dispersion 

configuration violates the landing velocity requirement.  

 

Sensitivity analysis can be used to identify the dominant sensor parameters and/or initial states that are the key 

factors which result in landing site performance violations by performing dispersion analysis with only one error 

source active at a time. Figure 8 to Figure 11 demonstrate the sensitivity analysis for position navigation error, 

velocity navigation error, position trajectory dispersion and velocity trajectory dispersion, respectively. The case 

with all errors turned on (“All”) and all turned off (“Zero”) are shown for reference, along with cases for initial 

condition errors and each sensor error, and “Others” which includes environmental process noise to account for 

unmodeled disturbances. Because the error sources are assumed to be independent, the root-sum-square (“RSS”) of 

all the cases together matches the “All” case.  In these example analyses, the TRN sensor and initial conditions lead 

to the large landing site errors. A requirement analysis will be performed next to search for candidate TRN sensor 

specs along with initial relative states dispersion range for Lander GNC to meet landing site requirements.  The 

detailed requirement results are provided in the following section. 

 

 
Figure 8. An Example of Navigation Error Sensitivity Analysis for Position States 
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Figure 9. An Example of Navigation Error Sensitivity Analysis for Velocity States  

 
Figure 10. An Example of Trajectory Dispersion Sensitivity Analysis for Position States 
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Figure 11. An Example of Trajectory Dispersion Sensitivity Analysis for Velocity States 

VI. Final Sensor Selection for Lunar Lander 

As demonstrated in the previous section, the baseline sensors and initial dispersion configuration defined in 

Section III violates the landing velocity accuracy requirement. The position requirement is marginally met using 

perfect actuators. Landing site velocity dispersions are dominated by initial conditions followed by TRN 

measurement accuracy. In this section, a LinCov Requirement Analysis is performed to redesign initial dispersion 

and TRN noise/error characteristics such that the landing site requirement will be met. 

 

An example performance analysis is summarized in Table 2. The results suggest that (1) single beam altimeter 

cannot be used to improve downrange and cross track landing site accuracy, (2) reduced TRN noise can cut down 

landing site position drift but not velocity drift, (3) baseline TRN bias and map bias has little impact on the landing 

accuracy, and (4) reducing initial position dispersion will improve the landing site velocity performance but not vice 

versa. 

 

Downrange  

(100m 3s)

Cross Track

  (100 m, 3s)
Altitude

Downrange  

(2 m/s 3s)

Cross Track

  (2 m/s, 3s)

Altitude

(2 m/s, 3s)

Baseline 98.73 54.05 44.71 3.25 0.96 4.20

Turn off TRN 5700.00 5693.00 76.57 6.98 4.86 7.29

Reduced Baseline Bias by a factor of 5 97.64 52.02 44.11 3.25 0.96 4.19

Reduce Baseline Map Bias by a factor of 10 98.73 53.29 44.11 3.25 0.96 4.19

Reduced Baseline Noise by 25% 75.99 43.24 43.99 3.13 0.85 4.18

Reduced Baseline Noise by a factor of 4 31.66 23.99 43.81 2.96 0.59 4.16

Reduce Baseline Init. Pos by a factor of 10 98.40 53.95 16.14 1.80 0.90 1.54

Reduce Baseline Init. Vel by a factor of 10 96.39 54.00 43.54 3.21 0.94 4.14

Reduce Baseline Init. Pos/Vel by a factor of 10 96.19 53.90 14.53 1.73 0.88 1.37

Reduce Baseline Init. Pos/Vel by a factor of 100 93.86 53.72 6.04 1.45 0.86 0.54

Parameter Variation From Baseline

Velocity (m/s)

TRN

Position (meter)

Initial States 

Dispersion

 
Table 2. An Example Requirement Analysis 
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Converting top level system requirements into low level navigation requirements has traditionally been an ad-

hoc art relying on engineering judgment, experience, and rough calculations. Table 2 is an example of how LinCov 

analysis brings rigor to this effort. In this approach, each identified key parameter is manually adjusted until all 

navigation requirements are satisfied. 

 

Deriving and validating navigation requirements for a specific application can, however, become an iterative and 

laborious task with only subjective results. By combining and applying fundamental principles commonly accepted 

with Monte Carlo analysis, linear covariance analysis, and sensitivity analysis; a fast, practical, and reliable 

methodology for deriving and validating navigation requirements emerges that also identifies the optimal sensor 

suite to fulfill those requirements. Instead of fully incorporating sensor models and filter algorithms to capture the 

performance of the navigation system, the navigation performance can be replicated using stochastic navigation. 

Sensitivity analysis can then provide a quick and automated approach for determining the navigation requirements. 

Once the sensitivity data is generated, the total uncertainty given different scaled values of the original error sources 

can be quickly obtained without re-running the simulation19.  The requirement generation capability introduced in 

reference 19 is more efficient than Table 2 approach. 

 

 In the final requirement analysis, 3dB margins are reserved for thruster mounting errors and firing delays. This is 

equivalent to a reduced landing site footprint and touch down velocity requirement by 30%. Figure 12 illustrates the 

touchdown performance with the improved TRN sensor noise error spec and tighter initial position dispersion. The 

blue curve in the crossrange vs. downrange plot represents the nominal trajectory of the lander while the red ellipse 

describes the 3-s dispersion of the footprint. With the improved TRN sensor noise error spec and tighter initial 

position dispersion, both position and velocity landing site requirements are met. 

 

 
Figure 12. An Example of Landing Site Footprint 
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VII.  Summary 

In this paper, a conceptual lunar lander and a corresponding GNC architecture and flight control algorithms are 

introduced. The theory and application of LinCov are reviewed. A LinCov analysis for the conceptual lunar lander 

GNC is performed for sensor selection. The sensitivity analysis is performed to identify which sensor specifications 

drive the landing site requirement violation. The LinCov requirement analysis is then performed to determine the 

corresponding sensor specifications to meet the landing performance and budget requirements. 
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